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SUMMARY

McComb, Jr.,

A variational theorem is presented for a body mdergoing creep.
Solutions to problems of creep bending and creep collapse of plates,
columns, beams, and shells cau be obtained by mesns of the direct methods
of the calculus of variations in con@nction with the stated theorem.
The application of the theorem is illustrated for plates and colunms
by the solution of two ssmple problems.

INTRODUCTION

Interest in the various effects of creep in metals has intensified
in recent yeas in the aeronautical field because of actual or envisaged
operation of aircraft in an elevated-temperature entionment. Much
experhnental work has been done to determtie the creep stress-strain
relations of various metals at elevated temperatures, and much data have
been accumulated on the creep collapse of columns and plates. Analyti-
cally, creep problems for beams, columns, end plates are more difficult
than the corresponding elastic problems, because the creep stress-strain
relations (which generally include the possibility of elastic and plastic
strains) sre nonlinear. One consequence of this nonlinearity is that the
distribution of the stresses through the thickness of the besm, plate, or
column is not nearly so simple as in the elastic case. Mathematical-anal-
yses of these structural components have often been restricted to s@li-
fied models (H-section colmns, for exsmple) to avoid this difficulty.

No lmown systematic procedures have been devised Yor reducing a given
creep problem to a set of differential equations, although some efforts
have been made to develop variational methods for use in attacking these
problems mathematically. Hoff (refs. 1 and 2) has suggested the use of
a minimum-complementary-energyprinciple based on an analog between the
creep-strain rates and the elastic stratis in a nonlinemly elastic body;
however, elastic and plastic strains are neglected snd the method does
not apply readily to plate and colmn problems. Wang snd Frager (ref. 3)
havegiven two general extremum principles (for a body with elastic,
plastic, thermal, and creep strains) analogous to the minimum-complementary-
energy and minimum-potential-energyprinciples in elasticity. ~ the
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present paper, an analog of Reissner*s variational theorem in elasticity
.

(refs. 4 and 5) is formulated (for a body with elastic, plastic, and
creep strains), and special forms of it are found to be convenient for
handling creep problems of plates, columns, beans, and shells. The use

b

of the variational theorem presented herein is illustrated by a~lications
to two creep problems: creep collapse of columns and plate bending. .-
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SYMEOLS

Young’s modulus

integral to be vsried (see eq. (7))

integrals definedby equations (46)

second invariant of stress-detiator tensor

radial and tsmgentisl bending moments, respectively,
per unit length

radial and tangential bending-moment coefficients
definedby equations (44)

compressive losd

buckling 10d for COhIIII

surface of a body

psrt of surface where stresses are prescribed

part of surface where displacements =e prescribed

surface traction

prescribed surface traction on Ss

displacement of neutral surface in x-direction

displacement coefficient in x-direction (see eqs. (28))
●

displacement of neutral surface in y-direction; also
used as volume integral .

,-

—

.
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deflection of neutral.surface in z-direction

deflection coefficients (see eqs. (28) or (w))

radius of circular plate

width of COhMl

thickness of column or plate

length of column

empirical constant in creep law

unit externsl normal to surface of undeformed body

empirical constsnt in creep law

lateral load intensity on circular plate

radial coordinate

stress-deviator tensor

time

displacement in x-tiection

displacement vector

prescribed displacement VeCtOr on Sd

displacement in y-direction

displacement in z-direction

coordinates

shesr strains in xz-~ yz-j and xy-~ectionsj
respectively

smpl.itudeof tiitial bow of colum divided by colm
thickness

~onecker delta

strati, positive in t.egsion
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~ij strain tensor

E;j noncreep portion of strain tensor

E;J creep strain tensor

~r>~t radial and tangential

% ~ys ~z strain in x-, y-, and

e -6x coordinate

A empirical Constsmt in

IJ Poisson’s ratio

P = r/R

a stress, positive

aij stress tensor

d:,6: stresses defined

strains, respectively

z-directions,respectively

creep law

in tension—.

in equation (27)

.

.

#.

.

U*

q)?al stress

ar9at radial

Dots over quantities

coefficients in equations (28)

snd tangential stresses, respectively

denote differentiation with respect to time,
a single prime denotes the elastic-plasticpart of the strain, and a
double prime denotes the creep part of the strain.

FORMULATION OF GENERAL VARIATIONAL THEORR4

For a body subject to creep, the equilibrium equations and strain-
displacement relations are the ssme as those for an elastic body; the
only difference in the mathematical formulation of a creep problem is in
the stress-strati relation. b the present development, the nonlineaz
strati-displacementrelations and equilibrium equations we used because P
of the intended application of the variational theorem to colum and
plate-collapse problems. However, the strains are still assumed to be
small, and the stress-strain relations are mitten as for infinitesimal .
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strains. The total strati rate is sep=ated
which ticludes elastic snd plastic effects.
rate is allowed to depend on the and on the

5

into a creep pat and a part
The creep part of the strain
stress deviator but not on

the stress rate or the first invariant of stress. ~ this paper, the
temperature of the body is assumed to be uniform and constant in time.

In tensor notation, a simple exsmple of the creep law assuned is

;;J
= f(J2,t)sij (1)

where sij is the stress deviator and J2 is the second invariant,

$ SijSij. For purposes of the present paper, the only restriction on

the stress-strain relation for the elastic-plastic psxt of the strain is
that the following relation hold (see ref. 6):

The equation for the components of

Cij (=*ui,j + Uj,i

or, in differentiated form,

dbij (2)

finite strain is

+ ‘k,i”k,j)

.
‘ij (

= $fiL,J + ‘ij,i+ ‘ik,iuk,j+ ‘k,ifik,j)

The equilibrium equation is

[ 1%k+ui,kju~k = 0
,J

(3)

(4)

(5)
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The equation giving the surface traction Ti in terms of stresses and

displacements on the boundary is .

Ti = “A!%+‘J (6)

where nj is the unit external normal to the surface of the undeformed

body.

The components of the tensor ~ij are not true strains, and neither

are the components of the tensor ~i~ true stresses. However, the spe-

cific virtual work due to a

Therefore, the tensor %j

virtual displacement 5% is given by

may be considered to be the generalized force r

conjugate to the generalized displacement Eij. In reference 7, this

tensor is called ki~ and in reference 8 it is called a~j. ●

As in many of the variational theorems of the mathematical theory of
plasticity (see ref. 6),the variational theoremto be stated here is for
stress rates and strain rates; that is, if the states of stress and strain
throughout the body are lmown at a given tistant, then application of the
variational theorem singles out the stress rates or strain rates that
actually occur from those rates of stress or strain ccmsidered in the
enunciation of the theorem. Thus, the operator b in the formal process
of tsking the variations is applied only to time derivatives of quantities
and not to the quantities themselves. Because of this, for example,
E+j = O because “’~Eij depends upon the state of stress but not upon

the stress rate. (Seeeq. (l).)

The quantity to be varied was constructed by an inverse process
guided by the form of Reissner’s theorem sad the first theorem of Wang
and~ager. By trial and error, the terms necesssryto obtain the .

desired result were found for the integral to be varied. .Let Ti = Ti

be prescribed on the part S~ of the bounding surface S of a body and P_
let hi = tii be prescribed on the remaining part Sd of the boun~.

The variational theorem to be proved is 51 = O where .

—
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(7)

In the first term of the volume titegral, eij is understock to be written

in terms of displacements and velocities (eq. (4)). b the third term of

the

and

volume htegrd.j ~;j is understood to be written in terms of stresses
II

stress rates, whereas ~ij is written in terms of stresses.

The variation of I is given by

(8)

!1
where a~ij = O as previously noted. The second term in the volume

integrsL may be transformed by sn integration by parts. The following

formula applies:

J[(aik + ‘k,i)&ij

1
blikdV

v
,J

(9)
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The third term may also be integrated by parts; thus,
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.

.

By using equations (9),(10), and (2), eqyation (8) becomes

r

or

7
(u)

.—

(12)

The coefficient of each of the variations vanishes by virtue of the
stress-strain relations, equilibrium equations, stress boundsry condi-
tions, and displacement boundary conditions, respectively. Thus, it is
proved that 51. 0 for the stress rates end strain rates that actuaU.y
occur● —.w

A term may be added to the volume integral to include the effects
of body forces if necesssxy. h some special cases, the boundsry integrsls ●
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A
should be mdified if boundsry conditions other than those on Ti or ui

are imposed.
*

h the next section, a form for I appropriate for application to
thin-plate snd column problems is developed.

THEORETICAL APPLICATION OF VARIATIONAL THEOREM

TO HATE AND COLU4N PROBLEMS

The variational theorem proved in the preceding section provides a
powerful means for deriving an appropriate two-dimensionsJ_theory for
thin plates subject to creep (or one-dimensional theory for besms snd
columns) enalogous to the two-db.ensional theory for thin elastic plates.
If certain simplifying assumptions are made about the dependence of the
various displacements and stresses on the z-coordinate (measured normal
to the middle surface), the integrations with respect to z in
the integral I may then be carried out. The equations resulting frcm
51 = O then involve only x, y, and t as independent vsriables.

In this paper, the ssme simplifying assmnptions with regard to dis-
placements me made that were tie in the elastic case. In psl%icular,
the &rnoulli-Euler hypothesis is retained. This hypothesis can be
regsmied.as a consequence of the equilibrium equations snd the strain-
displacement eqmtions as applied to a thin plate. The transverse she=
stresses vanish on the surface of the plate snd sre thus expected to be
negligible (compared with inplane stresses) throughout the thickness. Ey
any of the common stress-strain relations (elastic, plastic, or creep),
it follows that the trsmsverse shesr strains sre negligible. If w is
assumed to be approximately independent of z, then from

aw au
7xz=~+~=o

it follows that

(13)

(14)

aw
u= u-z—

ax
(15)

-——
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v aw
v=-z —

by
(16)

w= w (~7)

where U, V, and W can now be identified as the displacements of the
middle surface. Equations (15),(16),snd (17)express the Eernoulli-
Euler hypothesis.

—

A more rigorous treatment, in which the dependence of the various
quantities on the z-coordinate is deduced by expanding them in powers of
a thiclmess parameter, might be possible. In some derivations of plate
equations, U, V, and W sre interpreted as weighted averages of u,
V, and w. (See refs. 4 and 9, for example.) However, the consequences
of XSuming equations (15), (16), and (17) to be true are expected to
lead to accurate results for th~ p~tes-

Equation (3)for the finite strains in terms of displacements is ?
simplified by dropping all nonlinear terms except those containing powers
or products of slopes. This simplification lesds to the Von Kdrnkh equa-
tions for an elastic plate. The resulting eq~tions for the strains are ●

au-z

U

&+law2——
‘x=x ax2 2 ax

MTz ()i%+law2-—
‘Y=G 3Y2 2ay

aw awau ~-2za~ _—2CV=7V=—+
h ax axay+axay

(18)

(19)

(20)

Ez = 7X2 = Yyz =0 (21)
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In order to be consistent with these
powers or products of rates of slope
the volume integral in I. (See eq.

approximateions,
sre retained in
(7)●)

IL
.

only terms containing
the second term of “

Before the integration with respect to z can be carried out in
the expression for I, the dependence of the stresses upon z must be
assmed. Unlike the elastic case, the stresses do not vsxy linearly
through the thicbess, even though the strains do vsry linearly. The
particular advantage of the generalized form of Reissner’s variational
theorem for use in the present problem is that approximations for the
stresses and strains C= be made independently. Thus, there is no neces-
sity to invert the stress-strain relations in order to determine appro-
priate approximations for the stresses; in fact, to invert the stress-
strain relations would generally be impossible.

Many possibU_ities exist for assuming the form of the stresses as
functions of z, and each possibility leads to a different set of plate
equations; thus, no particular system of equations can be set up which
can be csJled the creep equations for a plate, column, or besm. Generally,
it is advantageous to assume the form of the stresses and displacements
as functions of x and y also, in which case all the integrations
in I may be performed. Setting the variation of the resulting expres-
sion equal to zero leads to a set of ordinary differential equations in
which the independent variable is the time. Further details of the appli-
cation of the variational theorem to creep-collapse and creep-bending prob-
lems of columns and plates can best be ccmmmmicated by means of examples,
two of which are given in the following sections.

Exsmple of Application of Variational Theorem

to Creep Collapse of Columns

A simplified treatment of the problem of creep col.lspseof the
uniform, pin-ended, rectangubr-section column showm in figure 1 is given
as the first example. The plastic part of the strati is omitted, snd the
stress-strain relation is assumed to be

where the second term on the right includes
secondary creep. The sxisl displacement u

aw
u= u-z—

ax

(22)

the effects of primary snd
is assumed to be given by

(23)
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and the axial strain = by
.

.

au

f)

#J+l W2E =—.
bx z bx2

(24)
2G

In the present case, the following terms enter into the e~ression
for I:

1.. ()lc&2
~ ‘ij’+k,i%, j = ~ ax

*(’~j+2:~j)5ij=:+Aptp-1’@-I (25)

where U(o,t) = 0.

●

ds= -;tJ(z,t) = o (P is constant)

)

The special form of I for the column is then

2
awai

) ()
1

Zfi+&#G -~-hptp-l&#dV——-
axax ax2 2 X a

(26)

For simplicity, the vsriation of a in the z-direction is assumed
to be ltnesr; thus,

* *
a ~a‘aO+hl (27)

b

The variation of displacements and stresses in the x-direction is
assumed as follows:

-.
.
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●

✎

.

.

where h is the

w= hWo Sill ;

u= u~x

(28)

cry fix.&al stiT J
thickness of the column, b is the width, snd Z is

the length. The dimensionless quantities on the right-hsnd sides of
equations (28) sre functions of time alone. The integrations in I may
be carried out, smd the result is (for m = 3)

where Pc is the buckling load of the colmn. The system of differential

eqgations to which the present approximate analysis leads is obtained by
differentiation’of I with respect to each of the dotted quantities;
thus, the result is
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The solution of this set of equations depends on the initial condi-
tions assigned. Suppose that the column & an Initial bow in the form
of a half sine wave before the load P is applied. If the load is assumed
to be applied rapidly, but not rapidiy enough to introduce inertia effects,
then the initial conditions for the creep problem ue those existhg imme-
diately after the load is applied. If the initial bow is given by

the initial conditions for the dimensionless quantities exe

A
w~(o) = —

1P
-~

co(o)= -1

Ul(o) = *
1 -—

P=

( 31)

T$e problem csn now be reducedto solving the following equation for WO:

(32)

Except for differences in notation, this equation is similar to one
given by Kempner (eq. (27) of ref.-lO) which was solved by a collocation
methd for sn idealized two-element column, except that the constant ZT/5
iS replaced by 4/3 and p is replaced W >: Equation (32) is easily
integrated to give

r 1
Pc

1 1 ‘

~wop(o) “..—- 1 W02 l+—
tP= p z log 5

()

(33)
6XE& 1+=W02 Wf(o) :

5
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The collapse time tc is found by taking the limit as WO - ~; thus,

tc =
[

Pc
—.
P

1

[

log 1 + 423
2’7’A2

(34)

The foregoing analysis is -tended merely as an example; more elab-
orate assumptions as to the stress variation through the thickness and
the variation of the several unknowns along the length of the column lead
to systems of nonlinear
numerical methd.

Example of

differentid. e~at ions which may be solved by some

Application of Variational Theorem

to Creep Bending of Plates

For a second example, the bending of a simply supported circular
plate under a constant uniform load is considered. (See fig. 2.) For
simplicity, the analysis Is restricted to the time during which the deflec-
tions sre small so that the linesr strain-displacement relations can apply.
The general form for I in this case is

(35)

Here, sgain, the effects of plasticity me neglected. The creep law is
that given by equation (l). The various terms in the integrand must be
specialized to apply to the present plate problem. In polar coordinates
the shear stress and shear strain are zero from symmetry, snd the remaining
stresses snd strains give

If a linear strain distribution through the thickness is assmed,

Zati.— Dt‘Far

(36) “

(37}
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For the elastic pat of the second term,

For the creep part of the second term,

M .
;iJ&ij = f(J2)sij6ij = f(J2)J2

NACATN 4003

.

.

(38)

(39)

Further, it is sssumed that the form of f is such that

In this exsmple, the exponent m is taken to be unity; this assumption
.

corresponds to the cubic law in the uniaxial stress case. Then,
●

The variation of
be linesr; thus,

the stresses through the thiclmess is

)]‘r (41)

assumed to

(42)

Doubtless, after creep is well.established, the stress distribution can-.
not actusJJy be Iinesx in the thickness &&ectionJ but, for purposes of
this exsmple, such an approxhnation is sufficient. When integration h the “
z-direction is csrried out,

.
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.

144 map.—
(
Mr2 + Mt2 -

~ h7 )[
M@ft i@Mr

where R is the radius of’the plate,

“2
+ Mt

)
- 2@Jt +

.

- Mt) + i@Mt -

1

Mr)] dp de (43)

P = r/R, and the primes denote
differentiation with respect to- p. ‘The following expressions, based on
the elastic solution for this problem, are assumed for the displacements
ad moments:

Equations (44) me
on differentiating
five equations are

w= h(l - P2)(W()+P%)
1

Mr =

Mt =

Eh%r,c)(l - 02) )
t

( )JE&4&o + Pat,l

(44)

substituted into equation (43) snd integrated. Then,
with respect to the dotted quantities, the following
obtained:

iir,o+*,() +fit,l= O

*r,o+Mt,l= O 1
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where

I
1

(Eh2)311 = p(l - P2)(mr - Mt)(Mr2 - M@t + Mt2)@
o

1
1

(Eh2)312 = P(% - Mr)(”r2 - ‘St + ~2)@

}

(46)

o

I(Eh2)313 = 1 p3(~t - Mr) (Mr2 - M&t + Mt2)@

o

Equations (45) can be solved for the five dotted quantities to give

()[(lW~3 R 2 3
)

3(1 + ~)

(fll=~fi ~11-12+13 ‘~313-zl )]
- 12

1

(47)

fir, o = tit, () = -;&l=
(

y 313 -11-12
)

where the expressions for 11, 12, and Ta me \

11 =

12 =

13 =

($ 3Mt,03- &,02%,l -

(
~ %,03 + %,o%,l +

(
~ 14MJ + 32%,0
40

% ,1

)3Mt,o%12 - Mt,13

) ‘
7%,0%,12 + %,13

(48)

.

.

.

8
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Equations (47) are a system of first-order nonlinear differential equa-
tions with time as the independent vsriable. The initial conditions
required to determine the solution sre given by
the loaded plate. (See ref. Il.) Thus,

the elastic solution to

.

9

()
4

We(o) = ;: 3(5 + V)(I - v)
16

4

<)

3(1 - pqWI(0)=.:: —
16

Mr,()(0)

()

23+V=Mt,o(0) = :; -

2

()
Mt,l(0) = -~; ~

#

(49)

Since ir,o=kt,o * Mr,O(0) = M-b,o(o)j it fo~ows that Mr,O = Mt,O.

Equations (47) with initial conditions of equations (49) can be integrated
numerically by the modified Euler methcxi(ref. 12). Numerical calctiations
were made for a plate having a ratio of radius to thiclmess of ~. The

value of E used was 7.4 x 106 psi and the &lue-of X@ used was
2.72x @ per hOw. These values together with the cubic uniaxial creep
law correspond approximately to characteristics of 2024-T3 aluminun alloy
at a temperature of 6000 F. (See ref. 2.) Results showing the time
history of the maximum deflection of a circular plate under lateral load
are presented in figure 3.

‘CONCLUDmG REMARKS

A variational theorem for creep has been formulated which is a
extension of a variational theorem developed by Reissner. Vsrious systems
of equations leading to approximate solutions to problems of the creep
behavior of plates, columns, besms, and shells may be obtained by using”
direct methods of the calculus of variations in conjunction with the
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stated theorem. The application of the theorem is illustrated for
.

plates and colwmas by the solution of two s-&@e problems.
“

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., March 5, 1957.
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Figure l.- Pin-ended rectangular-sectioncolumn.
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Figure 2.- Simply supported circulsx plate with lateral
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